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With Monte Carlo methods, we simulate dynamic relaxation processes of the two-dimensional XY model at
the Berezinskii-Kosterlitz-Thouless phase transition temperature and below, starting from both ordered and
disordered initial states. The two-time correlation function A�t� , t� is measured, and aging phenomena are
investigated. The power-law correction in the spatial correlation length ��t� for relaxation with an ordered
initial state and the logarithmic correction for relaxation with a disordered initial state are carefully analyzed.
The scaling functions of A�t� , t� are then extracted.
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I. INTRODUCTION

In recent years, many activities have been devoted to dy-
namic processes far from equilibrium. Examples are spin
glass dynamics, structural glass dynamics, phase ordering
dynamics, and nonequilibrium critical dynamics, etc. For
nonequilibrium critical dynamics, the universal dynamic
scaling form has been extended to dynamic processes far
from equilibrium, which is valid up to the macroscopic
short-time regime �1–7�. It is important that new critical ex-
ponents must be introduced to describe the scaling behavior
of the macroscopic initial conditions. Based on the short-
time dynamic scaling form, new techniques for the measure-
ments of both dynamic and static critical exponents as well
as the critical temperature have been developed �7–9�. Re-
cent progress includes, for example, numerical study of XY
models and Josephson junction arrays �10–13�, critical dy-
namics at surfaces �14,15�, and various critical systems
�16–22�. Dynamic reweighting methods have been suggested
�23,24�.

In glassy systems, the aging behavior is one of the central
phenomena. For a spin glass, for example, the energy land-
scape has complex metastable states, and therefore there is
slow dynamics below the spin-glass phase transition tem-
perature Tc. In a broad range of temperatures between T=0
and Tc, the aging phenomenon is characterized by dynamic
scale invariance �25�. Very recently, the aging phenomenon
at and around a continuous phase transition has also been
intensively studied �26–31�. In this case the aging phenom-
enon exhibits a dynamic scaling behavior far from equilib-
rium, induced by the long-range time correlation. This is
different from the aging phenomena induced by metastable
states in glassy systems below Tc. In a second-order phase
transition, the power-law behavior of the nonequilibrium
spatial correlation length and two-time correlation function,
etc., is relatively clear already in the short-time regime. The
aging phenomena may be identified with no difficulty and
the critical exponents can be extracted rather accurately.

In a Berezinskii-Kosterlitz-Thouless �BKT� phase transi-
tion �32,33�, however, the critical dynamics is slower due to

the existence of dynamic vortices. For example, the power-
law growth of the nonequilibrium spatial correlation length
usually undergoes strong corrections to scaling, and the scal-
ing function of the two-time correlation function also ap-
proaches the power-law form relatively slowly. These effects
together make it difficult to identify the aging phenomena,
and to extract the corresponding critical exponents and scal-
ing function. A typical physical system with a BKT phase
transition is the two-dimensional �2D� XY model �10,34�.
With spin-wave approximations or similar assumptions
�28,35,36�, attempts have been made to identify the aging
phenomena and extract the scaling function, taking into ac-
count the corrections to scaling. These Ansätze could fit the
numerical data at lower temperatures.

Based on general scaling arguments, in this paper we sug-
gest a theoretical approach to the aging phenomena of slow
dynamics, especially when the spatial correlation length and
the scaling function of the two-time correlation function
have not yet reached the power-law limits. We present the
results for the 2D XY model, and the method applies to dif-
ferent dynamical systems.

The 2D XY model is defined by the Hamiltonian

−
1

kT
H = K�

�ij�
S� i · S� j , �1�

where S� i= �Si,x ,Si,y� is a planar unit vector at site i of a square
lattice, the sum is over the nearest neighbors, and T is the
temperature. For convenience, here we simply take the nota-
tion T=1/K. In the literature, the transition temperature TBKT
is reported to be between 0.89 and 0.90 �37–39�. Below
TBKT, the system remains critical. In this paper, we consider
the Monte Carlo dynamics, which is believed to be in the
same universality class as Langevin dynamics. Following
Refs. �10,34�, we adopt the heat-bath algorithm in which a
trial move is accepted with probability 1 / �1+exp��E /T��,
where �E is the energy change associated with the move.
The dynamic process we simulate is that a system initially in
a completely ordered or disordered state is suddenly
quenched to the transition temperature TBKT or below, and
then released to the dynamic evolution of model A.

We define the two-time correlation function with t�� t as*Corresponding author. E-mail: zheng@zimp.zju.edu.cn
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A�t�,t� � ��
i

S� i�t�� · S� i�t��/Ld. �2�

Here L is the lattice size, and d=2 is the spatial dimension.
From general scaling arguments, A�t� , t� should obey a scal-
ing form at the critical temperature or the critical regime of

A�t�,t� = ���t���−�+2−dF„��t�/��t��… , �3�

after a time scale tmic that is sufficiently long in the micro-
scopic sense, but still short in the macroscopic sense. Here

−�+2−d is the scaling dimension of the magnetic field �S� i�,
��t� is the nonequilibrium spatial correlation length, and the
scaling function F(��t� /��t��) represents the scale invariance
in the critical regime. Such a scaling form of A�t� , t� holds
for both disordered and ordered initial states. But the forms
of ��t� and F�x� depend on the initial states. Except for the
dependence on the initial states, F�x� is universal even in the
finite-x regime. Due to corrections to scaling, ��t� is not uni-
versal in the finite-t regime. In the large-x limit, F�x� takes a
power-law form. Here we emphasize that the scaling form in
Eq. �3� is essentially the same as is written down in the
literatures �28,31,35,36�, and we only assume ��t� to have a
specific form including the correction to scaling.

For a second-order phase transition, for example in the 2D
Ising model, corrections to scaling are rather weak and neg-
ligible. After a microscopic time scale tmic, typically tens of
Monte Carlo time steps, the spatial correlation length grows
by a power law ��t�	 t1/z, independently of the initial condi-
tions �1,7�. z is the so-called dynamic exponent. In addition,
for a medium ratio x=��t� /��t�� �e.g., x�2�, the scaling
function F�x� already shows a power-law decay, F�x�	x−�.

The exponent �= ��−2+d� /2 for an ordered initial state,
while �=� for a disordered initial state �1,7,26,31�.

For a BKT phase transition, for example in the 2D XY
model, corrections to scaling are strong �10,34�. In Fig. 1,
A�t� , t� of the 2D XY model is displayed with solid lines on a
log-log scale. The data are obtained with the lattice size L
=256, and 10 000 samples are collected on average. Addi-
tional simulations with L=128 and 512 confirm that the
finite-size effect is negligible. Obviously, the curves in Fig. 1
do not obey a power law. The deviation of A�t� , t� from a
power law comes from both the scaling function F�x� itself
and the corrections to scaling in ��t�.

In Refs. �28,35,36�, efforts have been made to understand
the aging behavior of the 2D XY model. Based on the spin-
wave approximation, one can derive

A�t�,t� = �t − t��−�/z�4�t/t��/�1 + t/t��2�−�/2z �4�

for a dynamic process with an ordered initial state. Further, it
is assumed that �36�

A�t�,t� = �t − t��−�/zf„��t�/��t��…, ��t� 	 �t/ln t�1/z �5�

for a dynamic process with a disordered initial state. For the
2D XY model, it is well known that the dynamic exponent
z=2 for Monte Carlo or Langevin dynamics. These Ansätze
hold only at lower temperatures. In Fig. 2, we have analyzed
the numerical data of A�t� , t� with Eqs. �4� and �5� at the
temperature T=0.89. According to Eqs. �5�, for example,
A�t� , t��t− t���/2 as a function of x= �t / t�� / �ln t / ln t�� should
be independent of t�. This kind of data collapse is not ob-
served in Fig. 2.

Now let us start our analysis based on Eq. �3�. For a
dynamic process starting from an ordered state, the form

2 10 100 500

0.1

1

2 10 100 500
0.3

0.8

t/t’

A(t, t’)

(a) (b)

A(t, t’)

t/t’

Ordered start T=0.89 Disordered start T=0.89

t’=0

t’=320

160

80

40

20

t’=0

t’=320
160

80
40

20

FIG. 1. A�t� , t� is displayed with solid lines on
a log-log scale, in �a� and �b� for the ordered and
disordered initial states, respectively. The time
scale for t�=0 is t /10. Dashed lines show the
power-law fits. Dotted lines in �a� are the curves
fitted with A�t� , t�=a1�t / t��−�/2z�1+a2 / �t / t���.
Dotted lines in �b� are the curves fitted with
A�t� , t�=a1
�t / t�� / �a2+ln�t / t����−�/z.
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FIG. 2. Scaling plot of A�t� , t�: �a� for the or-
dered initial state, based on Eq. �4�; �b� for the
disordered initial state, based on Eq. �5�. � /z is
taken to be 0.118 for T=0.89 and 0.0715 for T
=0.70. Data collapse is not observed.

X. W. LEI AND B. ZHENG PHYSICAL REVIEW E 75, 040104�R� �2007�

RAPID COMMUNICATIONS

040104-2



A�t� , t�=a1�t / t��−�/2z�1+a2 / �t / t��� fits the numerical data
well, with a1 and a2 being t� dependent. For T=0.89, the
fitted curves are shown by the dotted lines in Fig. 1�a�, and
the exponent � /2z=0.0587�5� is extracted from the curves
of different t�. Similar fitting yields � /2z=0.0358�3� for T
=0.70. These values of � /2z are in good agreement with
those reported in Refs. �10,40�. Based on this analysis and
the numerical study in Ref. �10�, we assume that there exists
a power-law correction to scaling for the nonequilibrium spa-
tial correlation length,

��t� 	 t1/z�1 + c/t�−2/�, �6�

and the scaling function in Eq. �3� takes the form

F�x� 	 x−�/2�1 + c�/x2� . �7�

It is important that c and c� are constants. Assuming Eq. �6�
rather than ��t�	 t1/z�1+c / t� is just for convenience.

We will numerically verify Eqs. �3�, �6�, and �7�. In fact,
the scaling form in Eq. �3� can be easily demonstrated, if ��t�
in Eq. �6� is known. Direct measurements of ��t� from the
spatial correlation function are, however, not so accurate.
Our strategy is to determine ��t� from A�t�=0, t�	���t��−�/2,
following the scaling analysis above. Such a fitting for T
=0.89 has been done in Fig. 1�a�, and the extracted � /2z and
c are given in Table I. With ��t� in hand, and keeping z=2 in
mind, we plot A�t� , t����t���� as a function of x=��t� /��t�� in
Fig. 3�a�. Obviously, the data of different t� collapse nicely
onto a single curve. This proves the scaling form in Eq. �3�.
Here we note that, to identify the aging phenomenon de-
scribed by Eq. �3�, it is not necessary to specify the concrete
form of the scaling function F�x�.

With the data in Fig. 3�a�, we now fit the scaling function
F�x� to Eq. �7�, and the fitted curve is displayed by the solid
lines. The fitting is already good for x�1.5, and the values
of c� are listed in Table I. Finally, inserting Eqs. �6� and �7�
into Eq. �3�, simple calculations lead to

A�t�,t� 	 t�−�/z�1 + c/t���t/t��−�/2z�1 + �c/t� + c��/�t/t��� .

�8�

This equation explains the numerical data in Fig. 1�a�.
For a dynamic process starting from a disordered state,

A�t� , t� is dominated by logarithmic corrections, A�t� , t�
=a1��t / t�� / �a2+ln�t / t����−�/z, as shown with dotted lines in
Fig. 1�b�. a1 is t� dependent, and both a2 and � /z are weakly
t� dependent. Such a logarithmic correction to scaling has
been reported in the literature, e.g., in Refs. �10,34,36�. Fol-
lowing the theoretical argument in Ref. �34�,

��t� 	 �t/�ln t − c1��1/z, �9�

with c1 being a constant. From our analysis, the scaling func-
tion F�x� does not include a logarithmic term;

F�x� 	 x−��1 − c1�/x� �10�

fits the numerical data well. Here the convergence of F�x� to
a power law is somewhat slower than in the case with an
ordered initial state.

We now determine the spatial correlation length ��t� from
A�t�=0, t�	���t��−�. This fitting for T=0.89 has been done
in Fig. 1�b�, and the extracted � /z and c1 are given in Table
I. The values of � /z are in good agreement with those
reported in Refs. �10�. With ��t� in hand, we plot
A�t� , t����t���� as a function of x=��t� /��t�� in Fig. 3�b�.
Data collapse is observed. This proves the scaling form in
Eq. �3� for the dynamic relaxation starting from the disor-
dered state. With the data in Fig. 3�b�, we fitted the scaling
function F�x� to Eq. �10�, and the fitted curve is displayed by
the solid lines. The fitting is good for x�1.5, and the values
of c1� are listed in Table I. In Fig. 1�b�, A�t� , t� is plotted as a
function of t / t�, and its deviation from a power law comes
from both Eqs. �9� and �10�. Since the power-law term in Eq.
�10� is weaker, it just slightly modifies the exponent � /z and
the constant c1 if one fits the curves with only the logarith-
mic correction in Eq. �9�.

Finally, we observe that, at lower temperatures, our scal-
ing form in Eqs. �3� and �7� for the ordered initial state is
consistent with Eq. �4� from the spin-wave approximation,
and the difference is only the power-law correction of ��t� in
Eq. �6�. However, our scaling form in Eq. �3� for the disor-
dered initial state does differ from Eq. �5� due to the factor

TABLE I. Critical exponents � /z and � /z, as well as c, c�, c1,
and c1� in Eqs. �6�, �7�, �9�, and �10� extracted from Figs. 1 and 3.

T � /2z c c� � /z c1 c1�

0.89 0.0587�5� 0.92 0.22 0.738�5� 0.22 0.26

0.70 0.0358�3� 0.50 0.15 0.694�4� 0.56 0.50
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FIG. 3. Scaling plot of A�t� , t�: �a� for the or-
dered initial state, based on Eqs. �3� and �6�; �b�
for the disordered initial state, based on Eq. �3�
and �9�. Data collapse is observed. Solid lines in
�a� and �b� are the curves fitted with Eqs. �7� and
�10�, respectively.
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�t− t��−�/z, although Eq. �9� is not much different from ��t�
	�t / ln t�1/z in Eq. �5�. The difference will not disappear even
for a very large t, for it is logarithmic.

In conclusion, with Monte Carlo methods we have inves-
tigated the aging phenomena of the 2D XY model at the BKT
transition temperature and below. The dynamic processes
starting from both ordered and disordered states are simu-
lated, and the two-time correlation function A�t� , t� is mea-
sured. The scaling form A�t� , t�= ���t���−�+2−dF���t� /��t��� is
numerically verified. We propose to determine the spatial
correlation length ��t� from A�t�=0, t�. It is demonstrated
that there exists a power-law correction in ��t� for an ordered

initial state, and a logarithmic correction for a disordered
initial state. Then we extract the scaling function F�x� for
both the ordered and disordered initial states. The techniques
in this paper can be applied to different dynamic systems,
especially when there exist strong corrections to scaling,
and/or the ratio x=��t� /��t�� is not at the infinite limit.
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